
APDM SDK
Developer Guide

©2010 APDM, Inc.

Contents

Contents
1 Welcome 5

2 System Overview 6

2.1 Movement Monitors . 6

2.1.1 The Opal . 7

2.1.2 The Emerald . 7

2.1.3 The Sapphire . 7

2.2 Access Point . 8

2.3 Docking Station . 9

2.4 Recording Modes . 9

2.4.1 Synchronized Streaming . 9

2.4.2 Synchronized Logging . 9

2.4.3 Low Power Logging . 9

2.5 Motion Studio . 10

2.6 APDM Software Development Kit . 10

3 Hardware Driver Installation 11

3.1 Macintosh OSX (x32/x64) . 11

3.2 Windows XP (x32) . 11

3.2.1 Update Registry . 11

3.2.2 Access Point . 11

3.2.3 Docking Station . 12

3.3 Windows Vista (x32/x64) . 12

3.3.1 Update Registry . 12

3.3.2 Access Point . 12

3.3.3 Docking Station . 13

3.4 Windows 7 (x32/x64) . 13

3.4.1 Access Point . 13

3.4.2 Docking Station . 14

3.5 Linux (x32/x64) . 14

4 Software Tools and Libraries 16

4.1 Programming Libraries . 16

4.1.1 Development Environments . 16

2

Contents

4.2 C API . 16

4.2.1 Documentation . 16

4.2.2 Using the Host Libraries . 17

4.2.3 Headers . 17

4.2.4 System Context . 17

4.2.5 Docking Station Handle . 17

4.2.6 Configuration of Movement Monitors on a Docking Station 18

4.2.7 Access Point Handle . 18

4.2.8 Configuration of Synchronized Wireless Streaming & Logging Mode . . . 19

4.2.9 Wireless Channel Selection . 19

4.2.10 Configuration of Synchronized Logging Mode 20

4.2.11 Configuration of Low Power Logging Mode 20

4.2.12 Converting .APDM files to HDF5 or CSV 21

4.2.13 Return Codes . 21

4.2.14 Logging . 22

4.2.15 Threading . 22

4.3 Wireless Buffering and Data Correlation . 22

4.3.1 Max Delay / Max Latency . 23

4.4 DLL’s, DYLIB’s and SO’s . 24

4.4.1 Java . 24

4.4.2 Other Systems . 25

4.5 Example Code . 25

4.6 Programming . 25

4.6.1 Configuring a System . 25

4.7 Streaming Data from a Configured System . 27

4.7.1 System Configuration During Data Streaming 27

5 Working with HDF5 Files 29

5.1 HDFView . 29

5.2 Data Organization . 29

5.3 File Structure . 29

5.3.1 Version 2 . 29

5.3.2 Version 1 . 31

5.4 Working with HDF 5 in MATLAB . 32

5.5 Examples . 32

5.6 Notes . 34

3

Contents

6 Monitor Reference 35

6.1 Charging . 35

6.2 Powering Down . 35

6.3 Data Storage . 35

6.4 Cleaning and Storage . 35

6.5 Drivers . 36

6.6 Firmware Updates . 36

6.7 Technical Specifications . 36

6.8 LED Reference . 37

6.8.1 Status Codes and LED Colors/Patterns 37

6.8.2 Movement Monitor LED Reference . 37

7 Access Point Reference 39

7.1 Drivers . 39

7.2 Firmware Updates . 39

7.3 Mounting and Placement . 39

7.4 Single vs. Dual . 39

7.5 LED Reference . 39

8 Docking Station Reference 41

8.1 Drivers . 41

8.2 LED Reference . 41

8.3 Power . 42

9 Technical Support 43

4

1 Welcome

1 Welcome
Welcome to the APDM movement monitoring system. The following documentation will guide

you through understanding the architecture of the system and how to use it as a developer. The

core SDK documentation will focus on the C language implementation utilizing a dynamically

linked library. Other language bindings such as Java will be documented as well. For the C

language or any language binding not provided it is assumed that the end user should know

how to properly load the dynamically linked library and call its functions using the correct

calling convention. Most of the documentation will use a cross platform approach with specific

platform specific notes if needed. Example code will be provided for all included language

bindings to assist in getting the user up and running in the shortest period of time possible.

5

2 System Overview

2 System Overview
The APDM movement monitoring system allows the user to record data from multiple moni-

tors; each integrating a suite of sensors. The system can be configured in 3 recording modes

allowing for a wide rage of applications. Some movement monitors are limited to a subset

of these modes allowing for a lower cost solution. The modes of operation are synchronized

streaming, synchronized logging, and low power logging. Regardless of the mode the move-

ment monitor always will record data to its local memory card which can be downloaded for

offline analysis.

2.1 Movement Monitors

Movement monitors are the key element of the system and combine a complement of sensors

within a single package. Sensors include a 3 axis accelerometer, a 3 axis gyro, a 3 axis

magnetometer, and a temperature sensor. The accelerometers can be configured in a high

6G mode, or a low 2G mode depending on the target application. There are a number of

options for securing the monitors on subjects using a selection of straps.

6

2 System Overview

The Opal movement monitor

2.1.1 The Opal

The Opal is APDM’s full featured movement monitor allowing for use of all 3 modes of opera-

tion.

2.1.2 The Emerald

The Emerald is an option that allows for logging only without the ability to stream data in real

time. This version allows for synchronized and low power logging giving the user the ability to

do long term studies with subjects at home or in a clinical environment. It is recommended for

users that require multiple movement monitors to be recording on a subject at one time.

2.1.3 The Sapphire

The Sapphire allows only for the low power logging mode. This version of the movement mon-

itor has no wireless capabilities and may be the optimal choice for RF sensitive environments

or where a single movement monitor is needed without synchronization.

7

2 System Overview

The access point, for communicating wirelessly with your movement monitors

2.2 Access Point

The wireless access control point (access point for short) allows for wireless communication

between the host computer and Opal movement monitors. A single access point can support

up to 6 Opals.

The docking station, for charging, configuring, and downloading data from your movement monitors

8

2 System Overview

2.3 Docking Station

The docking station is used to configure, charge, and download data from the movement

monitors.

2.4 Recording Modes

Depending on the application of the movement monitor system one of the three available

configuration options can be selected. Each will have different requirements so not all config-

urations may be available.

2.4.1 Synchronized Streaming

In the synchronized streaming mode, access points attached to a PC collect data transmitted

wirelessly from the movement monitors. Each movement monitor is also saving all data to its

on board memory for download later as a backup collection mechanism. This mode allows

for near real time collection and processing of data from multiple synchronized movement

monitors. Only the Opals can be used in this mode.

2.4.2 Synchronized Logging

Synchronized logging gives the user the ability to collect data with multiple movement monitors

and tightly correlate the individual recordings during offline analysis. The synchronization

is achieved through wireless communication between the monitors. In this mode, up to 32

monitors can be synchronized within a single “mesh”. Only Emeralds and Opals are able to

use this mode.

2.4.3 Low Power Logging

All movement monitor products (Opals, Emeralds, and Sapphires) are able to operate in the

low power logging mode. In this mode, the monitors’ wireless radios are disabled, decreasing

the power required for operation. This enables the system to run for longer periods of time.

Since the mode does not use any wireless synchronization, each movement monitor will collect

data independently and potentially at slightly different rates due to clock drift. This mode

is recommended when tight correlation of data between multiple movement monitors is not

9

2 System Overview

needed.

2.5 Motion Studio

Motion Studio is the default software suite bundled with the APDM movement monitor system.

It provides an easy way to get up and running collecting data with your movement monitors.

2.6 APDM Software Development Kit

The APDM Software Development Kit (SKD) provides a programming interface to configure

and stream data from the movement monitors. In addition, it also provides functions for con-

verting the raw data files found on the monitor’s memory card into either a HDF5 (recom-

mended) format or CSV. The SDK provides the same low level interface to the hardware that

Motion Studio is built upon.

10

3 Hardware Driver Installation

3 Hardware Driver Installation

3.1 Macintosh OSX (x32/x64)

• Copy the file found at your installation’s “MotionStudio/drivers/libftd2xx.0.1.6.dylib” to your “/usr/local/lib”

directory. You will need administration privileges to do so.

3.2 Windows XP (x32)

3.2.1 Update Registry

1. Double click on the “MotionStudio/drivers/apdm usb serial number.reg” file and click through the resulting

dialogs.

2. If double clicking on the file does not automatically import the registry entry:

a) Click on the “Start” button.

b) Click on “Run”

c) Type “regedit” and press return.

d) Select “File→Import...” and select the file at “MotionStudio/drivers/apdm usb serial number.reg”

3.2.2 Access Point

1. Plug the access point into your computer.

2. The “Welcome to the Found New Hardware Wizard” dialog will popup

3. Select “No, not this time”

4. Click “Next”

5. Check “Install from a list or specific location”

6. Click “Next”

7. Uncheck “Search removable media”

8. Check “Include this location in the search”

9. Click the “Browse” button and navigate to your installation’s “MotionStudio/drivers/apdm accesspoint drivers”

folder

10. Click “Ok”

11. Click “Next”

12. If Windows prompts you about the driver not being signed, click ’Continue Anyway’

13. Click “Finish”

11

3 Hardware Driver Installation

3.2.3 Docking Station

1. Copy the file “MotionStudio/drivers/ftd2xx.dll” to the folder located at “C:/Windows/system32”. You will need

administrator priviledges to do so.

2. Attach a USB cable to the docking station. If more than one docking stations are chained together into a

single unit, then external power has to be connected as well.

3. Plug the docking station into your computer.

4. The “Welcome to the Found New Hardware Wizard” dialog will popup

5. Select “No, not this time”

6. Click “Next”

7. Check “Install from a list or specific location” and click “Next”

8. Uncheck “Search removable media”

9. Check “Include this location in the search”

10. Click the “Browse” button and navigate to the “MotionStudio/drivers/apdm docking station drivers” folder

11. Click “Ok” and Click “Next”

12. If Windows prompts you about the driver not being signed, click ’Continue Anyway’

13. Click “Finish”

14. This action may need to be repeated for each docking station installed. Docking stations that are plugged

in but are not yet installed will blink blue.

3.3 Windows Vista (x32/x64)

3.3.1 Update Registry

1. Double click on the “MotionStudio/drivers/apdm usb serial number.reg” file and click through the resulting

dialogs.

2. If double clicking on the file does not automatically import the registry entry:

a) Click on the “Start” button.

b) Click on “Run”

c) Type “regedit” and press return.

d) Select “File→Import...” and select the file at “MotionStudio/drivers/apdm usb serial number.reg”

3.3.2 Access Point

1. Plug the access point into your computer.

2. A “Found New Hardware” dialog will pop-up.

3. Select the “Locate and install driver software” option

4. Select “I don’t have the disc. Show me other options”.

5. Select “Browse my computer for driver software”.

6. Click on the “Browse” button and navigate to the “MotionStudio/drivers/apdm accesspoint drivers” folder.

12

3 Hardware Driver Installation

7. Check “Include Subfolders”.

8. Click “Next”.

9. A warning message will be presented indicating that “Windows cannot verify the publisher of this driver

software”.

10. Click “Install this driver software anyway”.

11. Close the confirmation dialog.

3.3.3 Docking Station

1. Copy the file “MotionStudio/drivers/ftd2xx.dll” to the folder located at “C:/Windows/system32”. You will need

administrator priviledges to do so.

2. Attach a USB cable to the docking station. If more than one docking stations are chained together into a

single unit, then external power has to be connected as well.

3. Plug the docking station into your computer.

4. A “Found New Hardware” dialog will pop-up.

5. Select the “Locate and install driver software” option

6. Select “I don’t have the disc. Show me other options”.

7. Select “Browse my computer for driver software”.

8. Click on the “Browse” button and navigate to the “MotionStudio/drivers/apdm docking station drivers” folder.

9. Check “Include Subfolders”.

10. Click “Next”.

11. A warning message will be presented indicating that “Windows cannot verify the publisher of this driver

software”.

12. Click “Install this driver software anyway”.

13. Close the confirmation dialog.

14. This action may need to be repeated for each docking station installed. Docking stations that are plugged

in but are not yet installed will blink blue.

3.4 Windows 7 (x32/x64)

3.4.1 Access Point

1. Plug the access point into your computer.

2. There may be an notification that the device driver could not be installed.

3. Click on the Windows “Start” button

4. Right-click on the “Computer” button and select “Manage”

5. Select the “Device Manager”

6. Under “Other Devices” there should be an entry for “AccessPoint” with a yellow exclamation point next to

it.

7. Right-click on the “AccessPoint” entry and select “Update Driver Software...”

13

3 Hardware Driver Installation

8. Select “Browse my computer for driver software”

9. Click on the “Browse” button and navigate to the “MotionStudio/drivers/apdm accesspoint drivers” folder.

10. Check “Include Subfolders”

11. Click “Next”

12. A warning message will be presented indicating that “Windows cannot verify the publisher of this driver

software”.

13. Click “Install this driver software anyway”.

14. Close the confirmation dialog.

3.4.2 Docking Station

1. Copy the file “MotionStudio/drivers/ftd2xx.dll” to the folder located at “C:/Windows/system32”. You will need

administrator priviledges to do so.

2. Attach a USB cable to the docking station. If more than one docking stations are chained together into a

single unit, then external power has to be connected as well.

3. Plug the docking station into your computer.

4. There may be an notification that the device driver could not be installed.

5. Click on the Windows “Start” button

6. Right-click on the “Computer” button and select “Manage”

7. Select the “Device Manager”

8. Under “Other Devices” there should be an entry for “DockingStation” with a yellow exclamation point next

to it.

9. Right-click on the “DockingStation” entry and select “Update Driver Software...”

10. Select “Browse my computer for driver software”

11. Click on the “Browse” button and navigate to the “MotionStudio/drivers/apdm docking station drivers” folder.

12. Check “Include Subfolders”

13. Click “Next”

14. A warning message will be presented indicating that “Windows cannot verify the publisher of this driver

software”.

15. Click “Install this driver software anyway”.

16. Close the confirmation dialog.

17. This action may need to be repeated for each docking station installed. Docking stations that are plugged

in but are not yet installed will blink blue.

3.5 Linux (x32/x64)

The user running the APDMsoftware libraries will need to have appropriate permissions to interface with particular

USB devices. This can be configured via the udev system. The user will need access to devices with the following

vendor ID (VID) and product ID (PID):

14

3 Hardware Driver Installation

Access Point: VID: 0x224F PID: 0x0001

Docking Station: VID: 0x224F PID: 0x0002

An example set of udev rules for the access point and docking station are as follows:

ACTION=="add", ATTRS{idVendor}=="224f", ATTRS{idProduct}=="0001", MODE:="0666"

ACTION=="add", ATTRS{idVendor}=="224f", ATTRS{idProduct}=="0002", MODE:="0666"

15

4 Software Tools and Libraries

4 Software Tools and Libraries

4.1 Programming Libraries

APDM provides programming libraries to allow integration on a variety of operating systems

and platforms. The following operating systems and versions are supported as of Feb, 2010.

Language Supported Operating Systems Comments

C/C++ Linux, 32bit

Mac OSX 10.6, Snow Leopard

Mac OSX 10.5, Leopard

Windows XP, 32bit, SP2/SP3

Windows 7, 64bit

Java Linux, 32bit JNI Bindings

Mac OSX 10.6, Snow Leopard

Matlab Mac OSX 10.6, Snow Leopard DYLIB Loading with C calls

4.1.1 Development Environments

• Windows / Visual Studio 2005 / CYGWIN / MinGW / GCC

• Mac OSX / GCC

• Linux / GCC

4.2 C API

4.2.1 Documentation

Included in the APDM software distribution is function API documentation, including descrip-

tions of functions purpose, parameters and return values. This can be found under “docs/doxygen”

in the software distribution.

16

4 Software Tools and Libraries

4.2.2 Using the Host Libraries

The host libraries allow you to create handles to any given access point or docking station

attached to the system. With an AP handle or docking station handle, you can query the given

device for information, and send configuration commands to the given device. If there is an

movement monitor attached to a docking station, then you can also send commands to the

movement monitor thru the docking station handle.

4.2.3 Headers

Two headers will be necessary to include in your project, apdm.h and apdm_types.h.

4.2.4 System Context

The host libraries also provide the notion of a system context. A context is a logical collec-

tion of access points and docking stations (movement monitors attached therein) that can be

configured as a group and work in concert with each other. The context allows you to cor-

rectly configure wireless channels and redundant wireless streaming AP’s, as well as provide

correlation of the samples sent out by all the sensors (correlation in time by sync value).

The data type used for a context is:

apdm_ctx_t

and can be allocated with the apdm_ctx_allocate_new_context() function, and free’ed with

the apdm_ctx_free_context() function .

4.2.5 Docking Station Handle

The data type used for a docking station handle is:

apdm_device_handle_t

The easiest way to create a handle is to use the apdm_sensor_allocate_and_open() func-

17

4 Software Tools and Libraries

tion, passing in the index of the given docking station number that you want a handle on.

Similarly, calling the apdm_sensor_close_and_free_handle() function to cleanly close the

handle and free it’s respective memory.

4.2.6 Configuration of Movement Monitors on a Docking Station

The host libraries contain a number of functions, starting with apdm_sensor_cmd_XXXX() that

are used to configure movement monitors. Settings such as sampling rates, enabling and

disabling different sensors, configuration of wireless parameters etc can be done using thees

function calls. See low level API documentation for details on these commands.

4.2.7 Access Point Handle

The data type used for an access point handle is:

apdm_ap_handle_t

An AP handle can be allocated with the

apdm_allocate_ap_handle()

function, free’ed with the

apdm_free_ap_handle()

function. Once a handle is allocated, you can open a given access point by index using the

apdm_ap_connect()

function. Once you’ve connected, you can then send commands to the AP and query the AP

for information using AP specific functions.

Access Point specific functions are of the form with apdm_ap_XXXX().

18

4 Software Tools and Libraries

4.2.8 Configuration of Synchronized Wireless Streaming & Logging Mode

The host libraries provide a function

apdm_autoconfigure_devices_and_accesspoint4()

that can be used to configure a group of AP’s and movement monitors for streaming mode.

After a context has been allocated and initialized, and the

apdm_open_all_access_points()

function has been called with the respective context, you can call auto configure to configure

the system. Once the system is configured, you can disconnect the movement monitors from

the docking station to allow them to stream data, and begin to use the

apdm_ctx_get_next_access_point_record_list()

and

apdm_ctx_extract_data_by_device_id()

functions to stream data.

The maximum number of movement monitors in a single configuration is 24

The maximum number of access points in a single configuration is 6

4.2.9 Wireless Channel Selection

Movement monitors transmit data in the 2.4ghz wireless spectrum range. Channel zero corre-

sponds to roughly 2.4000ghz, and channel 90 corresponds to roughly 2.4900ghz. The 2.4ghz

spectrum has many other consumer electronic devices, such as WiFi routers, cordless phones

and blue-tooth devices, that also operate in this area of the spectrum. As such, it’s important

to choose a channel that is not already in use by another device.

19

4 Software Tools and Libraries

The most common source of interference is from wireless network access points. You can

determine the channel that the WiFi router is running on and determine its corresponding

frequency from the following URL: http://en.wikipedia.org/wiki/IEEE_802.11

4.2.10 Configuration of Synchronized Logging Mode

The host libraries provide a function,

apdm_autoconfigure_mesh_sync()

that will allow you to configure all movement monitors attached to the host in mesh time syn-

chronization and data logging mode.

In synchronized logging mode, the movement monitors will transmit and receive their current

time values, to and from each other such that their internal clocks all maintain the same notion

of time.

There can be a maximum of 32 devices used in synchronized logging mode.

4.2.11 Configuration of Low Power Logging Mode

Low power logging mode consists of enabling/disabling the sensors of interest on the move-

ment monitor, and disabling wireless. Wireless can be disabled with a call to

apdm_sensor_cmd_config_set()

and passing in

CONFIG_ENABLE_WIRELESS

and a value of 0.

20

http://en.wikipedia.org/wiki/IEEE_802.11

4 Software Tools and Libraries

4.2.12 Converting .APDM files to HDF5 or CSV

Data stored on the movement monitor is in a proprietary .apdm binary format. To make this

data useful, it must first be passed through a set of filters that generate correct, calibrated SI

unit output data.

apdm_process_raw()

is used to convert .apdm files to HDF5 or CSV. Raw data can also be optionally saved. The

basic process is as follows:

1. Create a file with apdm_create_file_hdf() or apdm_create_file_csv().

2. Get the device info structure for each device that’s streaming using the apdm_sensor_populate_device_info()

function.

3. Pass an array of records and device info structures to the apdm_write_record_hdf()

or apdm_write_record_csv() function for each new sample.

4. Close the data file with apdm_close_file_hdf() or apdm_close_file_csv() when

done.

4.2.13 Return Codes

Most library functions return a value of type

enum APDM_Status

(defined in apdm_types.h), which indicates success or failure code of the given function that

was called. A convenience function,

apdm_strerror()

is provided for converting these error codes to strings if necessary. Refer to function specific

documentation for the details of each function.

21

4 Software Tools and Libraries

4.2.14 Logging

The APDM libraries have logging information that is generated at various points of it’s internal

processing. Each log event that occurs has a specified severity, all logging funnels thru a

single piece of common infrastructure. By default, log messages are sent to STDOUT, but by

calling

apdm_set_log_file()

you can re-direct logging output to a file.

4.2.15 Threading

The host libraries are not thread safe. Thread safety, synchronization and enforcement of

mutual exclusion are left up to the application in which the libraries are to be used.

4.3 Wireless Buffering and Data Correlation

In wireless streaming mode, the system utilizes numerous levels of buffering, including on-

device buffering, in access point buffering, and buffering in the host libraries. There are many

reasons that this buffing is necessary, including temporary wireless issues, scenarios where

the host application does not retrieve data from the access point and times when the applica-

tion wants to wait a short amount of time for a movement monitor to retransmit data after the

wireless issues pass.

Due to the hardware level properties of the system, it becomes necessary to process data

from sensors and access points knowing about potential transient problems at the hardware

level. Some of the issues include the following:

• Duplicate data transmission by a sensor to one or more access points in the event that

the sensor does not receive the ACK from the access point

• Variable delay in the relative streams of data from the movement sensors. e.g. one

sensor may be transmitting data that is older then then the other sensors while it is

catching up from a transient wireless problem.

• Missing data from a sensor, in the event that the sensor is turned off, or goes out of range

22

4 Software Tools and Libraries

for an extended period of time.

By in large, when the system context is used for streaming data, it will resolve these issues

prior to emitting data from the libraries. There are some configuration parameters that will

affect the behavior of the libraries with regard to timing and potentially missing data.

apdm_ctx_sync_record_list_head()

Before the application begins to received data, it should call the

apdm_ctx_sync_record_list_head()

function. This will cause the host libraries and access point to clear out all it’s buffers, stream

in a few samples such that a subsequent call to

apdm_ctx_get_next_access_point_record_list()

will return a full sample set, with data from all sensors in the system.

If this function is not called, you may get old data, or partial sets of data from a call to

apdm_ctx_get_next_access_point_record_list()

4.3.1 Max Delay / Max Latency

During auto configuration, and via library calls to

apdm_ctx_set_max_sample_delay_seconds()

you can specify the maximum amount of time to wait for sample(s) to be re-transmitted from

an movement sensor.

This setting has some important implications with regards to data reliability and the latency of

23

4 Software Tools and Libraries

data by the time it’s received by the user application.

• If a movement monitor is unable to transmit samples to an access point, the host libraries

will stall their data output, waiting until max-latency seconds elapse, before giving up and

emitting a partial sample set. E.G. If there are 6 sensors configured, and one of them is

unable to transmit, the libraries will emit 5 samples, and indicate that they have missed

the 6th sample.

• For as long as the given sensor is having problems transmitting, the host libraries will

continue to delay outputting of data until the max-latency threshold for data age has

elapses. So, if you have max-latency set to 15 seconds, and a sensor goes out of range,

you’ll find an initial pause of 15 seconds while the max-latency period elapses, then you

will continue to receive data from the libraries, but as long as the sensor cannot transmit,

the data will be 15 seconds old.

• The default max-latency setting is 15 seconds

4.4 DLL’s, DYLIB’s and SO’s

Depending on platform, a DLL, DYLIB or SO will be linked in with your application at run time.

These library files provide access to all the functions necessary to configure and communicate

with movement monitors, docking stations and access points.

These libraries are written in C and provide standard C-symbols so as to facilitate linking with

as many other languages, systems and platforms as possible.

Common ways of getting the dynamic library to load include, but are not limited to the following:

• compile time flags in your build system and making available the dynamic library for the

system in one of the standard library search paths

• a call to the LoadLibrary() function on Microsoft platforms

4.4.1 Java

Java language bindings are also provided with the library distribution. These provide an object

oriented interface to access points, docking stations, movement monitors and contexts. When

using the java bindings, you’ll need to make sure the DLL/DYLIB/SO library file is in one of

the library search paths. Environmental variables can be set to achieve this or command line

24

4 Software Tools and Libraries

parameters can be passed into the JVM to indicate where it should search for these libraries.

4.4.2 Other Systems

Many other systems, such as MatLab and LabView provide the ability to load 3rd party DLL’s

and call functions provided in those DLL’s. Please refer to the documentation provided by your

application or system on how to load and call functions from external libraries.

4.5 Example Code

The host library distribution provides sample code under dist/samples. Samples include source

code and pre-compiled binaries for the respective applications. The sample applications of

most interest are as follows:

• autoconfigure_system.c: This is used to configure a set of attached movement mon-

itors and access points into wireless streaming mode.

• stream_data.c: After a system has been autoconfigured and is streaming data to its

respective access points, this sample will stream data off the access points and print the

data, correctly grouped, to the console.

• autoconfigure_mesh.c: This program is used to configure a set of movement monitors

into mesh time synchronization and logging mode.

• convert_raw.c: This program is used to convert raw ”.apdm” files from a movement

monitor into a CSV or HDF output file.

• configure_low_power_mode.c: This program is used to configure any attached move-

ment monitors into low power, non-streaming mode.

4.6 Programming

4.6.1 Configuring a System

Physical Configuration During Setup

C Programming

1. Allocate a handle:

25

4 Software Tools and Libraries

apdm_ctx_allocate_new_context()

2. Using the handle, open access points attached to the system:

apdm_open_all_access_points()

3. Autoconfigure the access point(s) and attached movement monitors.

apdm_autoconfigure_devices_and_accesspoint2()

4. Disconnect from the attached access points and movement monitors

apdm_ctx_disconnect()

5. Free the allocated context

apdm_ctx_free_context()

Java Programming An example program for configuring and streaming data from a java ap-

plication is provided below. Functions available in the java libraries are usually mappings of

the corresponding c-functions, and more detailed documentation can be found in the dOxygen

documentation.

import java.util.List;

import com.apdm.APDMNoMoreDataException;

import com.apdm.Context;

import com.apdm.IContext;

import com.apdm.RecordRaw;

public class StreamDataSample {

public static void main(String args[]) throws Exception {

apAutoConfig();

System.out.println("Please disconnect devices from their cables and press enter...");

System.in.read();

streamData();

}

public static void apAutoConfig() throws Exception {

IContext ap = Context.getInstance();

ap.open();

26

4 Software Tools and Libraries

ap.autoConfigureDevicesAndAccessPoint3(90, true, false);

// physically disconnect sensors from cables

ap.close();

}

public static void streamData() throws Exception {

IContext ap = Context.getInstance();

ap.open();

// Call this many times to stream data

for (int i = 0; i < 100; i++) {

List<RecordRaw> records = null;

try {

records = ap.getNextRecordList();

} catch (APDMNoMoreDataException ex) {

Thread.sleep(100);

}

if (records != null) {

System.out.println("====================================");

for (RecordRaw rec : records) {

System.out.println(rec.toString());

}

}

}

ap.close();

}

}

4.7 Streaming Data from a Configured System

4.7.1 System Configuration During Data Streaming

Programming Steps

1. Allocate a handle:

apdm_ctx_allocate_new_context()

2. Using the handle, open access points attached to the system:

apdm_open_all_access_points()

27

4 Software Tools and Libraries

3. Set the max latency value in the libraries.

apdm_ctx_set_max_sample_delay_seconds()

4. Get the attached movement monitor ID list, if useful:

apdm_ctx_get_device_id_list()

5. Synchronize the record head list in the libraries.

apdm_ctx_sync_record_list_head()

6. Collect a list of sensor readings, from all movement monitors, for the same sample point

in time. This is usually used within loop or as a regular event.

apdm_ctx_get_next_access_point_record_list()

7. Extract data readings on a per-movement monitor basis, by movement monitor ID num-

ber.

apdm_ctx_extract_data_by_device_id()

8. Disconnect from the attached access points and movement monitors

apdm_ctx_disconnect()

9. Free the allocated context

apdm_ctx_free_context()

28

5 Working with HDF5 Files

5 Working with HDF5 Files
HDF5 is the preferred format for storing APDM movement monitor data. It is a standard format

for scientific data that is efficient and widely supported. It uses less space than CSV, is faster

to load, and supports more structured data. This section will cover the organization of the

APDM movement monitor data and the basics of reading HDF5 files in MATLAB.

5.1 HDFView

A free program called HDFView (http://www.hdfgroup.org/hdf-java-html/hdfview/)

can be used to explore, plot, and export this data into other formats. A variety of free open

source tools for working with HDF files are also available at http://www.hdfgroup.org/

HDF5/release/obtain5.html.

5.2 Data Organization

HDF5 files are organized like a file structure. The root of the file contains two attributes. One

is a list of monitor IDs that have data stored in this file. The other is a version number for the

organization of the HDF 5 file.

5.3 File Structure

5.3.1 Version 2

• MonitorLabelList Attribute containing an array of monitor labels in the same order as the CaseIdList

• CaseIdList Attribute containing an array of monitor case IDs in the same order as the MonitorLabelList

• FileFormatVersion Attribute containing the file format version (2)

• Annotations Table containing annotations

– Time Annotation time in epoch microseconds

– Case ID A movement monitor case ID associated with the annotation

– Annotation The annotation string

• AA-XXXXXX A group is included in the file for each monitor in the CaseIdList, with the name equal to the

case ID

– SampleRate Attribute containing the output data rate for the monitor

– DecimationFactor Decimation factor for the monitor’s internal processing

29

http://www.hdfgroup.org/hdf-java-html/hdfview/
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html

5 Working with HDF5 Files

– ModuleID The module ID for the monitor

– TimeGood Flag indicating whether the time has been set on the monitor since it powered on

– RecordingMode One of: ”Wireless streaming”, ”Synchronized logging”, or ”Unsynchronized logging”

– DataMode Indicates whether the data was retrieved wirelessly or copied from the monitor’s internal

storage while docked. One of: ”Streamed wirelessly” or ”Logged to monitor”

– AccelerometersEnabled 1 for enabled, 0 for disabled

– GyroscopesEnabled 1 for enabled, 0 for disabled

– MagnetometersEnabled 1 for enabled, 0 for disabled

– DecimationBypass Internal use, deprecated

– CalibrationVersion Version of the calibration data used to convert from raw samples to calibrated

SI units

– VersionString1 Firmware version string 1

– VersionString2 Firmware version string 2

– VersionString3 Firmware version string 3

– CalibratedDataPopulated 1 for populated, 0 for unpopulated

– LocalTimeOffset Time in milliseconds to add to UTC to convert to local time

– SyncValue Dataset containing the internal sync value for each sample

* Units Attribute string containing the timestamp units (1/2560th of a second since 0:00 Jan 1,

1970 UTC)

– Time Dataset containing a timestamp for each sample

* Units Attribute string containing the units (microseconds since 0:00 Jan 1, 1970 UTC)

– Calibrated Group containing calibrated data

* Accelerometers Dataset containing accelerometer data (Nx3)

· Units Attribute string containing the accelerometer units (m/s2)

· Range Attribute containing the range setting for the accelerometer (2g or 6g)

* Gyroscopes Dataset containing gyroscope data (Nx3)

· Units Attribute string containing the gyroscope units (rad/s)

* Magnetometers Dataset containing magnetometer data (Nx3)

· Units Attribute string containing the magnetometer units (µT)

* Temperature Dataset containing the temperature (Nx1)

· Units Attribute string containing the temperature units (◦C)

* TemperatureDerivative Dataset containing the temperature derivative (Nx1)

· Units Attribute string containing the temperature derivative units (◦C/s)

– Raw Group containing raw data if selected during import

* Accelerometers

* Gyroscopes

* Magnetometers

* DataFlags

* OptData

* Temperature

* TemperatureDerivative

30

5 Working with HDF5 Files

5.3.2 Version 1

This version is deprecated. All new files created will use the most recent version.

• Device List Attribute containing a list of monitors present in the file

• File Format Version Attribute containing the file version

• Annotations Table containing annotations

– Time Annotation time in epoch microseconds

– Device ID A movement monitor ID associated with the annotation

– Annotation The annotation string

• Opal xxx/ Group containing information about and data from monitor ID xxx

– Sample Rate Attribute containing the output data rate for the monitor

– Decimation Factor Decimation factor for the monitor’s internal processing

– Time Good Flag indicating whether the monitor has had its time set since turning on

– Decimation Bypass Internal use, deprecated

– Calibration Version Version of the calibration data used to convert from raw samples to calibrated

SI units

– Version String1 Firmware version string 1

– Version String2 Firmware version string 2

– Version String3 Firmware version string 3

– Acceleration Dataset containing data from the accelerometers (Nx3)

* Units Attribute string containing the acceleration units (m/s2)

– Angular Velocity Dataset containing data from the gyroscopes (Nx3)

* Units Attribute string containing the angular velocity units (rad/s)

– Magnetic Field Dataset containing data from the magnetometers (Nx3)

* Units Attribute string containing the magnetic field units (a.u.)

– Temperature Dataset containing the temperature of the monitor (Nx1)

* Units Attribute string containing the temperature units (◦C)

– Temperature Derivative Dataset containing the rate of change of temperature

* Units Attribute string containing the temperature derivative units (◦C/s)

– Sync Value Dataset containing the internal timestamp of each sample

* Units Attribute string containing the timestamp units (1/2560th of a second since 0:00 Jan 1,

1970 UTC)

* Time Dataset containing the time for each sample in microseconds since 0:00 Jan 1, 1970 UTC

Additional fields present when raw data is also stored:

• Opal XX/

– Calibration Data Attribute containing binary block of calibration data

31

5 Working with HDF5 Files

– Raw File Version Attribute containing the version string of the raw file (if this was converted from a

.apdm file instead of streamed)

– Accelerometers Raw Dataset containing raw accelerometer data (Nx3)

– Gyroscopes Raw Dataset containing raw gyroscope data (Nx3)

– Magnetometers Raw Dataset containing raw magnetometer data (Nx3)

– Data Flags Dataset containing flags used for processing the raw data

– Opt Data Dataset containing several measurements taken at a low data rate

– Temperature Raw Dataset containing lowpass filtered, but uncalibrated temperature data (Nx1)

5.4 Working with HDF 5 in MATLAB

MATLAB contains two high level functions for working with HDF5 files. Additional help and

examples are included in the built in help documentation for these functions.

hdf5info reads the structure of the file and all of the attribute values and returns them in an

easy to browse MATLAB structure.

hdf5read reads a complete dataset or attribute from the HDF5 file.

Additionally, one more high level helper function is included with the APDM movement monitor

software. This function also contains built in help documentation and examples.

hdf5readslab reads a portion of a dataset from the HDF5 file.

5.5 Examples

Below is simple example of loading acceleration data from an APDM movement monitor HDF5

file (version 2) in MATLAB.

filename = ’example.h5’;

try

vers = hdf5read(filename, ’/FileFormatVersion’);

catch

try

vers = hdf5read(filename, ’/File_Format_Version’);

catch

error(’Couldn’’t determine file format’);

end

32

5 Working with HDF5 Files

end

if vers ∼= 2

error(’This example only works with version 2 of the data file’)

end

caseIdList = hdf5read(filename, ’/CaseIdList’);

groupName = caseIdList(1).data;

accPath = [groupName ’/Calibrated/Accelerometers’];

fs = hdf5read(filename, [groupName ’/SampleRate’]);

fs = double(fs);

acc = hdf5read(filename, accPath)’; %Transposed to make Nx3 in MATLAB

t = (1:size(acc,1))/fs;

figure;

plot(t,acc);

A more complicated example using the flexibility of HDF5 to load and process only part of a

data set. This can be useful when the data set is too large to fit into memory. Care is taken

not to attempt to read beyond the end of the file.

filename = ’example.h5’;

try

vers = hdf5read(filename, ’/FileFormatVersion’);

catch

try

vers = hdf5read(filename, ’/File_Format_Version’);

catch

error(’Couldn’’t determine file format’);

end

end

if vers ∼= 2

error(’This example only works with version 2 of the data file’)

end

idList = hdf5read(filename, ’/CaseIdList’);

groupName = idList(1).data;

accPath = [groupName ’/Calibrated/Accelerometers’];

fs = hdf5read(filename, [groupName ’/SampleRate’]);

fs = double(fs);

fhandle = H5F.open(filename, ’H5F_ACC_RDONLY’, ’H5P_DEFAULT’);

dset = H5D.open(fhandle, [groupName ’/Calibrated/Accelerometers’], ’H5P_DEFAULT’);

dspace = H5D.get_space(dset);

[ndims, dims] = H5S.get_simple_extent_dims(dspace);

nSamples = dims(1);

33

5 Working with HDF5 Files

nSamplesRead = min(nSamples, 60*fs); %read at most one minute of data

accSegment = hdf5readslab(filename, accPath, [0,0], [nSamplesRead, 3])’;

t = (1:nSamplesRead)/fs;

figure;

plot(t,accSegment);

5.6 Notes

• Arrays in MATLAB use the FORTRAN convention of storing them in memory by column

then row, instead of the C convention (used by HDF 5) of row then column. This has

the effect of making the returned arrays transposed from how this document (and many

other interfaces to HDF5) claim they are laid out.

• Older versions of MATLAB (before 2009a) did not support the compression used in Mo-

tion Studio’s HDF 5 files. If you are using one of these older versions, the free h5repack

utility available from the HDF Group can remove the compression. This utility is available

at:

http://www.hdfgroup.org/HDF5/release/obtain5.html

The command to repack the file is:
h5repack -f NONE example.h5 example_no_compression.h5

34

http://www.hdfgroup.org/HDF5/release/obtain5.html

6 Monitor Reference

6 Monitor Reference

6.1 Charging

A movement monitor charges its internal battery any time it is connected to a docking station.

At the optimal charge rate the movement monitors internal battery will complete its bulk charge

(80%-90%) within an hour for a fully discharged battery. It is recommended that the movement

monitor be charged for up to 3 hours to provide a peak charge to the battery ensuring it has

the longest run time and improves battery life. It is recommended for the health of the battery

to to have at least a bulk charge for storage of the movement monitor.

6.2 Powering Down

If you wish to power down your monitors for storage or travel, dock or plug in the monitors you

wish to power down and select the “Tools→Halt All Monitors” option in Motion Studio. After

this is selected, all monitors will power down when they are undocked or unplugged.

6.3 Data Storage

The movement monitor utilizes a flash card to store data while logging. This data can be

downloaded by using a docking station to dock the movement monitor. When the movement

monitor is docked it finishes up writing to the internal flash card and then releases it to the

docking station. At this time the docking station indicates to the PC that there is a new read

only removable drive to be mounted. Using your file browser you can navigate to the removable

drive and copy the files off of it. The files are in a proprietary raw format and need to be

converted to either a HDF5 or CSV format that will provide data in calibrated SI units. This

conversion happens automatically if Motion Studiois used to import the data. Alternately, there

are functions in the SDK to do this conversion programmatically.

6.4 Cleaning and Storage

Cleaning the movement monitors case should be done by wiping the bottom of the case where

it contacts the skin with Rubbing alcohol or other cleaning wipe. If the entire case needs to be

cleaned use only an ethyl alcohol or isopropyl alcohol based wipe. Methyl alcohol should be

35

6 Monitor Reference

avoided for cleaning the top since it will cause degradation of the plastic over time. The move-

ment monitor should not be submerged in any liquids or subjected to any high temperatures

for cleaning. The straps on the monitor can be cleaned by wiping them down with Rubbing

alcohol. Alternatively the straps can be removed and washed separately using mild soap and

water. Storage of the movement monitor should be in a dry static fee location. An anti-static

bag or in the supplied case is recommended. The movement monitor should also not be sub-

jected to any large G forces to prevent damage or changes to the calibration of the sensors in

the monitor. The movement monitor should also have an adequate charge to ensure a good

battery lifetime.

6.5 Drivers

Drivers are provided as part of the library distribution and Motion Studio. Instructions for

installing drivers are provide in the “Hardware Driver Installation” section of this document.

6.6 Firmware Updates

Updating the movement monitor firmware should be done using the Motion Studio software.

6.7 Technical Specifications

• The accelerometer range is ±58.8 m/ s2 (6 g) (optionally ±19.6 m/ s2 (2 g)).

• Accelerometers have a typical noise density of 1.3 mm/ s2/
√

Hz.

• The X and Y axis gyros have a range of ±34.9 rad/s (2000 dps)

• The Z axis gyro has a range of ±26.8 rad/s (1500 dps)

• The X and Y axis gyros have a typical noise density of 0.81 mrad/ s/
√

Hz

• The Z axis gyro have a typical noise density of 2.2 mrad/ s/
√

Hz

• Magnetometers have a range of ±6 Gauss

• The magnetometers have a typical noise density is 160 nT/
√

Hz

• Positive X is pointing from the monitor toward the connector. Positive Y is pointing left of

X looking top down at the monitor. Z is pointing up out of the top of the case. Angular

velocity sign is defined according to a right hand rule. A counterclockwise rotation about

the Z axis looking from the +Z direction is positive.

36

6 Monitor Reference

6.8 LED Reference

6.8.1 Status Codes and LED Colors/Patterns

The LEDs on the access points and movement monitors provide important information about

the operating state of the hardware, including error statuses. The tables below list the LED

patterns associated with these states and can be useful in troubleshooting issues encountered

with the hardware.

6.8.2 Movement Monitor LED Reference

Movement monitors contain a RGB LED capable of outputting a wide array of colors to the user

to indicate its current state. The following colors are used: white (�), red (�), yellow (�), green

(�), cyan (�), blue (�), magenta (�), and led off (). In the off state the LED will appear as a

non illuminated white dot in the corner of the monitor opposite the docking connector. All LED

patterns are output on a repeating cycle which may vary in period depending on the pattern.

In all cases the last color listed will stay constant until the pattern repeats. For example “� � ”

will blink yellow twice and then stay off until the pattern repeats.

37

6 Monitor Reference

State LED Pattern

Startup (boot loader)

Startup wait (5 sec) �

Failed to load firmware �

Boot loader mode �

Firmware

Reset mode �

Docked mode (transition) �

Docked mode (bulk charging) ��(fast)

Docked mode (trickle charging) ��(slow)

Docked mode (full charge) �

Docked mode (bad cable connection) � �

Error mode: default � �

Error mode: configuration � � �

Error mode: system � � � �

Error mode: data buffer � � � � �

Error mode: SD buffer � � � � � �

Error mode: SD I/O � � � � � � �

Card is full �

Run mode (transition) �

Run mode (battery level indication off) �

Run mode (battery level 4/4) � � � �

Run mode (battery level 3/4) � � �

Run mode (battery level 2/4) � �

Run mode (battery level 1/4) �

Powering off �

Wireless Streaming Debug LED Modes

Normal �

CPU out of cycles � �

Missed an access point time packet � �

38

7 Access Point Reference

7 Access Point Reference

7.1 Drivers

Drivers are provided as part of the library distribution and Motion Studio. Instructions for

installing drivers are provide in the “Hardware Driver Installation” section of this document.

7.2 Firmware Updates

Updating the movement monitor firmware should be done using the Motion Studio software.

7.3 Mounting and Placement

The antennas of the access point are located directly behind the black plastic face of the

access point. The access point(s) should be aimed such that this face is in the approximate

direction of the area where the movement monitors will be used.

7.4 Single vs. Dual

With the wide range of wireless environments it is not always possible to provide a reliable

channel of communication between any two nodes. Using two access points per set of up

to six movement monitors is one method of improving reliability by utilizing spacial diversity.

In this mode a movement monitor can hop between access points depending on which one

has a better signal path. For large spaces or with spaces that have obstacles that may block

wireless signals this mode of operation is recommended. Configuration of a system in this

mode is transparent to the user and is automatically selected when there is enough access

points available for the given number of movement monitors. Using multiple access points

requires them to all have a synchronization cable connected between them.

7.5 LED Reference

Access points contain a RGB LED capable of outputting a wide array of colors to the user to

indicate its current state. The following colors are used: white (�), red (�), yellow (�), green

(�), cyan (�), blue (�), magenta (�), and led off (). All LED patterns are output on a repeating

39

7 Access Point Reference

cycle which may vary in period depending on the pattern. In all cases the last color listed will

stay constant until the pattern repeats. For example “� � ” will blink yellow twice and then stay

off until the pattern repeats.

State LED Pattern

Access point is powered on and is not receiving

data from any monitors

�

Access point is receiving data from all monitors and

there is no excessive latency for any of the monitors

�

Access point is receiving data from all monitors but

there is excessive latency (¿3s) in one or more

monitors. The latency is, however, decreasing (im-

proving). This usually indicates that one or more

monitors was temporarily obstructed and is now

catching up.

��

Access point is receiving data from all monitors but

there is excessive latency (¿3s) in one or more

monitors which is increasing (getting worse). This

usually indicates that one or more monitors is ob-

structed and is having trouble transmitting its data.

��

Access point is receiving data from one or more,

but not all, of the movement monitors

�

Access point is receiving data from one or more

monitors that it is not expecting to receive data (e.g.

there is a monitor configured on another computer

system streaming data)

��(fast)

40

8 Docking Station Reference

8 Docking Station Reference

8.1 Drivers

Drivers are provided as part of the library distribution and Motion Studio. Instructions for

installing drivers are provide in the “Hardware Driver Installation” section of this document.

8.2 LED Reference

Docking stations contain a RGB LED capable of outputting a wide array of colors to the user

to indicate its current state. The following colors are used: white (�), red (�), yellow (�), green

(�), cyan (�), blue (�), magenta (�), and led off (). All LED patterns are output on a repeating

cycle which may vary in period depending on the pattern. In all cases the last color listed will

stay constant until the pattern repeats. For example “� � ” will blink yellow twice and then stay

off until the pattern repeats.

41

8 Docking Station Reference

State LED Pattern

OK �

Powered off, USB suspended, or booloader pause �

OK, but USB not enumerated �

Power problem. Need to plug in external power or

USB power.

�

Docked, SD unavailable on host � �

Docked, SD card mounted on host �

SD card read-access in progress �

USB error �

Error �

Error: SD card mounting error � �

Error: in-dock USB hub problem � � �

Bootloader mode �

Updating firmware �

Hardware Error -DA � � � � � �

Hardware Error - GA � � � � � �

Hardware Error - PA � � � � � �

Hardware Error - UA � � � � � �

8.3 Power

• If running a single docking station, it can be powered from:

– a USB cable plugged into a dedicated USB port on your computer

– a USB cable plugged into a a powered USB hub

– a USB cable plugged into a wall adapter (charging only)

– the external AC adapter (charging only)

• If running a chain of 2 or more docking stations:

– For data transfer, both USB and external AC power are required. If a power-related

error occurs, then the docking station will blink yellow until external or power is

plugged in.

– if only charging is required, the external AC power must be used

42

9 Technical Support

9 Technical Support
APDM is pleased to assist you with any questions you may have about our software or about

the use of the technology for your application.

Please contact us at:

email: info@apdm.com

telephone: 888-988-APDM (2736)

43

	Welcome
	System Overview
	Movement Monitors
	The Opal
	The Emerald
	The Sapphire

	Access Point
	Docking Station
	Recording Modes
	Synchronized Streaming
	Synchronized Logging
	Low Power Logging

	Motion Studio
	APDM Software Development Kit

	Hardware Driver Installation
	Macintosh OSX (x32/x64)
	Windows XP (x32)
	Update Registry
	Access Point
	Docking Station

	Windows Vista (x32/x64)
	Update Registry
	Access Point
	Docking Station

	Windows 7 (x32/x64)
	Access Point
	Docking Station

	Linux (x32/x64)

	Software Tools and Libraries
	Programming Libraries
	Development Environments

	C API
	Documentation
	Using the Host Libraries
	Headers
	System Context
	Docking Station Handle
	Configuration of Movement Monitors on a Docking Station
	Access Point Handle
	Configuration of Synchronized Wireless Streaming & Logging Mode
	Wireless Channel Selection
	Configuration of Synchronized Logging Mode
	Configuration of Low Power Logging Mode
	Converting .APDM files to HDF5 or CSV
	Return Codes
	Logging
	Threading

	Wireless Buffering and Data Correlation
	Max Delay / Max Latency

	DLL's, DYLIB's and SO's
	Java
	Other Systems

	Example Code
	Programming
	Configuring a System

	Streaming Data from a Configured System
	System Configuration During Data Streaming

	Working with HDF5 Files
	HDFView
	Data Organization
	File Structure
	Version 2
	Version 1

	Working with HDF 5 in MATLAB
	Examples
	Notes

	Monitor Reference
	Charging
	Powering Down
	Data Storage
	Cleaning and Storage
	Drivers
	Firmware Updates
	Technical Specifications
	LED Reference
	Status Codes and LED Colors/Patterns
	Movement Monitor LED Reference

	Access Point Reference
	Drivers
	Firmware Updates
	Mounting and Placement
	Single vs. Dual
	LED Reference

	Docking Station Reference
	Drivers
	LED Reference
	Power

	Technical Support

